Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
PLoS One ; 19(4): e0300539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574058

RESUMO

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Assuntos
Actinas , Axônios , Axônios/metabolismo , Nocodazol/farmacologia , Actinas/metabolismo , Zíper de Leucina , Regeneração Nervosa/fisiologia , Citoesqueleto/metabolismo , Homeostase , MAP Quinase Quinase Quinases/genética
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562780

RESUMO

Pathological TDP-43 loss from the nucleus and cytoplasmic aggregation occurs in almost all cases of ALS and half of frontotemporal dementia patients. Stathmin2 (Stmn2) is a key target of TDP-43 regulation and aberrantly spliced Stmn2 mRNA is found in patients with ALS, frontotemporal dementia, and Alzheimer's Disease. STMN2 participates in the axon injury response and its depletion in vivo partially replicates ALS-like symptoms including progressive motor deficits and distal NMJ denervation. The interaction between STMN2 loss and TDP-43 dysfunction has not been studied in mice because TDP-43 regulates human but not murine Stmn2 splicing. Therefore, we generated trans-heterozygous mice that lack one functional copy of Stmn2 and express one mutant TDP-43Q331K knock-in allele to investigate whether reduced STMN2 function exacerbates TDP-43-dependent pathology. Indeed, we observe synergy between these two alleles, resulting in an early onset, progressive motor deficit. Surprisingly, this behavioral defect is not accompanied by detectable neuropathology in the brain, spinal cord, peripheral nerves or at neuromuscular junctions (NMJs). However, the trans-heterozygous mice exhibit abnormal mitochondrial morphology in their distal axons and NMJs. As both STMN2 and TDP-43 affect mitochondrial dynamics, and neuronal mitochondrial dysfunction is a cardinal feature of many neurodegenerative diseases, this abnormality likely contributes to the observed motor deficit. These findings demonstrate that partial loss of STMN2 significantly exacerbates TDP-43-associated phenotypes, suggesting that STMN2 restoration could ameliorate TDP-43 related disease before the onset of degeneration.

3.
Cells ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334594

RESUMO

We evaluated whether inhibiting sterile alpha and (Toll/interleukin receptor (TIR)) motif-containing 1 (SARM1) activity protects retinal ganglion cells (RGCs) following ischemic axonopathy (rodent nonarteritic anterior ischemic optic neuropathy: rNAION) by itself and combined with ciliary neurotrophic factor (CNTF). Genetically modified SARM1(-) rats were rNAION-induced in one eye and compared against equivalently induced wild-type animals of the same background. Optic nerve (ON) diameters were quantified using optical coherence tomography (SD-OCT). RGCs were quantified 30 d post-induction using retinal stereology for Brn3a(+) nuclei. ON sections were analyzed by TEM and immunohistochemistry. SARM1(-)(-) and WT animals were then bilaterally sequentially rNAION-induced. One eye received intravitreal vehicle injection following induction; the contralateral side received CNTF and was analyzed 30 d post-induction. Inhibiting SARM1 activity suppressed axonal collapse following ischemic axonopathy. SARM1(-) animals significantly reduced RGC loss, compared with WT animals (49.4 ± 6.8% RGC loss in SARM1(-) vs. 63.6 ± 3.2% sem RGC loss in WT; Mann-Whitney one-tailed U-test, (p = 0.049)). IVT-CNTF treatment vs. IVT-vehicle in SARM1(-) animals further reduced RGC loss by 24% at 30 d post-induction, but CNTF did not, by itself, improve long-term RGC survival in WT animals compared with vehicle (Mann-Whitney one-tailed t-test; p = 0.033). While inhibiting SARM1 activity is itself neuroprotective, combining SARM1 inhibition and CNTF treatment generated a long-term, synergistic neuroprotective effect in ischemic neuropathy. Combinatorial treatments for NAION utilizing independent neuroprotective mechanisms may thus provide a greater effect than individual treatment modalities.


Assuntos
Neuropatia Óptica Isquêmica , Células Ganglionares da Retina , Animais , Ratos , Animais Selvagens , Fator Neurotrófico Ciliar , Retina , Roedores
4.
JCI Insight ; 9(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175722

RESUMO

Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.


Assuntos
Doenças Ósseas , Diabetes Mellitus Tipo 1 , Doenças do Sistema Nervoso Periférico , Humanos , Masculino , Feminino , Camundongos , Animais , Axônios , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Camundongos Knockout , Proteínas do Citoesqueleto/genética , Proteínas do Domínio Armadillo/genética
5.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37873434

RESUMO

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that a) low dose nocodazole treatment activates DLK signaling and b) DLK signaling mitigates the microtubule damage caused by the cytoskeletal perturbation. We also perform RNA-seq to discover a DLK-dependent transcriptional signature. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes and promoting actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.

6.
J Biol Chem ; 299(11): 105290, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758001

RESUMO

Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.


Assuntos
Acinetobacter baumannii , NAD , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Deutério , Hidrolases/metabolismo , Mamíferos/metabolismo , NAD/metabolismo , Domínios Proteicos
7.
PLoS Genet ; 19(1): e1010581, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626385

RESUMO

Glial cells play a critical role in maintaining homeostatic ion concentration gradients. Salt-inducible kinase 3 (SIK3) regulates a gene expression program that controls K+ buffering in glia, and upregulation of this pathway suppresses seizure behavior in the eag, Shaker hyperexcitability mutant. Here we show that boosting the glial SIK3 K+ buffering pathway suppresses seizures in three additional molecularly diverse hyperexcitable mutants, highlighting the therapeutic potential of upregulating glial K+ buffering. We then explore additional mechanisms regulating glial K+ buffering. Fray, a transcriptional target of the SIK3 K+ buffering program, is a kinase that promotes K+ uptake by activating the Na+/K+/Cl- co-transporter, Ncc69. We show that the Wnk kinase phosphorylates Fray in Drosophila glia and that this activity is required to promote K+ buffering. This identifies Fray as a convergence point between the SIK3-dependent transcriptional program and Wnk-dependent post-translational regulation. Bypassing both regulatory mechanisms via overexpression of a constitutively active Fray in glia is sufficient to robustly suppress seizure behavior in multiple Drosophila models of hyperexcitability. Finally, we identify cortex glia as a critical cell type for regulation of seizure susceptibility, as boosting K+ buffering via expression of activated Fray exclusively in these cells is sufficient to suppress seizure behavior. These findings highlight Fray as a key convergence point for distinct K+ buffering regulatory mechanisms and cortex glia as an important locus for control of neuronal excitability.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Convulsões/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética
8.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36287202

RESUMO

Charcot-Marie-Tooth disease type 2A (CMT2A) is an axonal neuropathy caused by mutations in the mitofusin 2 (MFN2) gene. MFN2 mutations result in profound mitochondrial abnormalities, but the mechanism underlying the axonal pathology is unknown. Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1), the central executioner of axon degeneration, can induce neuropathy and is activated by dysfunctional mitochondria. We tested the role of SARM1 in a rat model carrying a dominant CMT2A mutation (Mfn2H361Y) that exhibits progressive dying-back axonal degeneration, neuromuscular junction (NMJ) abnormalities, muscle atrophy, and mitochondrial abnormalities - all hallmarks of the human disease. We generated Sarm1-KO (Sarm1-/-) and Mfn2H361Y Sarm1 double-mutant rats and found that deletion of Sarm1 rescued axonal, synaptic, muscle, and functional phenotypes, demonstrating that SARM1 was responsible for much of the neuropathology in this model. Despite the presence of mutant MFN2 protein in these double-mutant rats, loss of SARM1 also dramatically suppressed many mitochondrial defects, including the number, size, and cristae density defects of synaptic mitochondria. This surprising finding indicates that dysfunctional mitochondria activated SARM1 and that activated SARM1 fed back on mitochondria to exacerbate the mitochondrial pathology. As such, this work identifies SARM1 inhibition as a therapeutic candidate for the treatment of CMT2A and other neurodegenerative diseases with prominent mitochondrial pathology.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Humanos , Ratos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Retroalimentação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
9.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36287209

RESUMO

Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome. The polymorphisms resulted in amino acid substitutions V98M and R232Q, which reduced NMNAT2 NAD+-synthetase activity. We generated a mouse model to mirror the human syndrome and found that Nmnat2V98M/R232Q compound-heterozygous CRISPR mice survived to adulthood but developed progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes were all SARM1-dependent. Remarkably, macrophage depletion therapy blocked and reversed neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induced inflammatory neuropathy and highlight the potential of immune therapy as a treatment for this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças do Sistema Nervoso Periférico , Masculino , Animais , Camundongos , Humanos , Adulto , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Degeneração Neural/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Axônios/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Macrófagos/metabolismo
10.
Science ; 377(6614): eadc8969, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36048923

RESUMO

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Assuntos
ADP-Ribosil Ciclase , Proteínas Adaptadoras de Transporte Vesicular , Bactérias , Proteínas de Bactérias , ADP-Ribose Cíclica , Imunidade Vegetal , Receptores Toll-Like , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ADP-Ribose Cíclica/biossíntese , ADP-Ribose Cíclica/química , Isomerismo , NAD/metabolismo , Domínios Proteicos , Receptores de Interleucina-1/química , Transdução de Sinais , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptofano/química , Triptofano/genética
11.
Elife ; 112022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976223

RESUMO

Cellular behaviors emerge from layers of molecular interactions: proteins interact to form complexes, pathways, and phenotypes. We show that hierarchical networks of protein interactions can be defined from the statistical pattern of proteome variation measured across thousands of diverse bacteria and that these networks reflect the emergence of complex bacterial phenotypes. Our results are validated through gene-set enrichment analysis and comparison to existing experimentally derived databases. We demonstrate the biological utility of our approach by creating a model of motility in Pseudomonas aeruginosa and using it to identify a protein that affects pilus-mediated motility. Our method, SCALES (Spectral Correlation Analysis of Layered Evolutionary Signals), may be useful for interrogating genotype-phenotype relationships in bacteria.


Assuntos
Mapas de Interação de Proteínas , Proteoma , Bactérias/genética , Fímbrias Bacterianas , Fenótipo
12.
Cell Rep ; 39(13): 111001, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767949

RESUMO

TDP-43 mediates proper Stathmin-2 (STMN2) mRNA splicing, and STMN2 protein is reduced in the spinal cord of most patients with amyotrophic lateral sclerosis (ALS). To test the hypothesis that STMN2 loss contributes to ALS pathogenesis, we generated constitutive and conditional STMN2 knockout mice. Constitutive STMN2 loss results in early-onset sensory and motor neuropathy featuring impaired motor behavior and dramatic distal neuromuscular junction (NMJ) denervation of fast-fatigable motor units, which are selectively vulnerable in ALS, without axon or motoneuron degeneration. Selective excision of STMN2 in motoneurons leads to similar NMJ pathology. STMN2 knockout heterozygous mice, which better model the partial loss of STMN2 protein found in patients with ALS, display a slowly progressive, motor-selective neuropathy with functional deficits and NMJ denervation. Thus, our findings strongly support the hypothesis that STMN2 reduction owing to TDP-43 pathology contributes to ALS pathogenesis.


Assuntos
Esclerose Amiotrófica Lateral , Proteínas de Ligação a DNA , Estatmina , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Estatmina/deficiência , Estatmina/genética , Estatmina/metabolismo
13.
PLoS Genet ; 18(6): e1010246, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737728

RESUMO

SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.


Assuntos
Proteínas do Domínio Armadillo , NAD , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Drosophila/genética , Drosophila/metabolismo , NAD/genética , NAD+ Nucleosidase/genética , NAD+ Nucleosidase/metabolismo
14.
Cell Rep ; 39(4): 110738, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476981

RESUMO

Perturbed gut microbiome development has been linked to childhood malnutrition. Here, we characterize bacterial Toll/interleukin-1 receptor (TIR) protein domains that metabolize nicotinamide adenine dinucleotide (NAD), a co-enzyme with far-reaching effects on human physiology. A consortium of 26 human gut bacterial strains, representing the diversity of TIRs observed in the microbiome and the NAD hydrolase (NADase) activities of a subset of 152 bacterial TIRs assayed in vitro, was introduced into germ-free mice. Integrating mass spectrometry and microbial RNA sequencing (RNA-seq) with consortium membership manipulation disclosed that a variant of cyclic-ADPR (v-cADPR-x) is a specific product of TIR NADase activity and a prominent, colonization-discriminatory, taxon-specific metabolite. Guided by bioinformatic analyses of biochemically validated TIRs, we find that acute malnutrition is associated with decreased fecal levels of genes encoding TIRs known or predicted to generate v-cADPR-x, as well as decreased levels of the metabolite itself. These results underscore the need to consider microbiome TIR NADases when evaluating NAD metabolism in the human holobiont.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Animais , Bactérias/metabolismo , Criança , ADP-Ribose Cíclica , Vida Livre de Germes , Humanos , Camundongos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Receptores de Interleucina-1
15.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334231

RESUMO

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Assuntos
Proteínas do Domínio Armadillo , NAD , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Domínios Proteicos
16.
J Biol Chem ; 298(3): 101647, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101451

RESUMO

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Assuntos
Axônios , MAP Quinase Quinase Quinases , Degeneração Neural , Proteínas de Ligação a Tacrolimo , Axônios/enzimologia , Axônios/metabolismo , Axônios/patologia , Zíper de Leucina , Lisina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Degeneração Neural/enzimologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Regeneração Nervosa , Proteínas de Ligação a Tacrolimo/metabolismo , Ubiquitina/metabolismo
17.
Mol Neurodegener ; 17(1): 1, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991663

RESUMO

BACKGROUND: In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. METHODS: To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. RESULTS: Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. CONCLUSIONS: These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions.


Assuntos
Esclerose Amiotrófica Lateral , Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Doenças Neurodegenerativas , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Camundongos , Doenças Neurodegenerativas/metabolismo
18.
Brain ; 145(11): 3787-3802, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35022694

RESUMO

Humans carrying the CORD7 (cone-rod dystrophy 7) mutation possess increased verbal IQ and working memory. This autosomal dominant syndrome is caused by the single-amino acid R844H exchange (human numbering) located in the 310 helix of the C2A domain of RIMS1/RIM1 (Rab3-interacting molecule 1). RIM is an evolutionarily conserved multi-domain protein and essential component of presynaptic active zones, which is centrally involved in fast, Ca2+-triggered neurotransmitter release. How the CORD7 mutation affects synaptic function has remained unclear thus far. Here, we established Drosophila melanogaster as a disease model for clarifying the effects of the CORD7 mutation on RIM function and synaptic vesicle release. To this end, using protein expression and X-ray crystallography, we solved the molecular structure of the Drosophila C2A domain at 1.92 Šresolution and by comparison to its mammalian homologue ascertained that the location of the CORD7 mutation is structurally conserved in fly RIM. Further, CRISPR/Cas9-assisted genomic engineering was employed for the generation of rim alleles encoding the R915H CORD7 exchange or R915E, R916E substitutions (fly numbering) to effect local charge reversal at the 310 helix. Through electrophysiological characterization by two-electrode voltage clamp and focal recordings we determined that the CORD7 mutation exerts a semi-dominant rather than a dominant effect on synaptic transmission resulting in faster, more efficient synaptic release and increased size of the readily releasable pool but decreased sensitivity for the fast calcium chelator BAPTA. In addition, the rim CORD7 allele increased the number of presynaptic active zones but left their nanoscopic organization unperturbed as revealed by super-resolution microscopy of the presynaptic scaffold protein Bruchpilot/ELKS/CAST. We conclude that the CORD7 mutation leads to tighter release coupling, an increased readily releasable pool size and more release sites thereby promoting more efficient synaptic transmitter release. These results strongly suggest that similar mechanisms may underlie the CORD7 disease phenotype in patients and that enhanced synaptic transmission may contribute to their increased cognitive abilities.


Assuntos
Drosophila melanogaster , Retinite Pigmentosa , Animais , Humanos , Cognição , Mutação , Terminações Pré-Sinápticas , Retinite Pigmentosa/genética , Transmissão Sináptica , Proteínas de Drosophila/genética
19.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935867

RESUMO

Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. There are no effective therapies to prevent or treat this disorder. Pathologically, CIPN is characterized by a "dying-back" axonopathy that begins at intra-epidermal nerve terminals of sensory neurons and progresses in a retrograde fashion. Calcium dysregulation constitutes a critical event in CIPN, but it is not known how chemotherapies such as paclitaxel alter intra-axonal calcium and cause degeneration. Here, we demonstrate that paclitaxel triggers Sarm1-dependent cADPR production in distal axons, promoting intra-axonal calcium flux from both intracellular and extracellular calcium stores. Genetic or pharmacologic antagonists of cADPR signaling prevent paclitaxel-induced axon degeneration and allodynia symptoms, without mitigating the anti-neoplastic efficacy of paclitaxel. Our data demonstrate that cADPR is a calcium-modulating factor that promotes paclitaxel-induced axon degeneration and suggest that targeting cADPR signaling provides a potential therapeutic approach for treating paclitaxel-induced peripheral neuropathy (PIPN).


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Degeneração Neural/patologia , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Canais de Cálcio/metabolismo , ADP-Ribose Cíclica/antagonistas & inibidores , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
20.
Neurobiol Dis ; 163: 105586, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923110

RESUMO

Protein phosphatase 2A (PP2A) is a major cellular phosphatase with many protein substrates. As expected for a signaling molecule with many targets, inhibition of PP2A disrupts fundamental aspects of cellular physiology including cell division and survival. In post-mitotic neurons, the microtubule associated protein Tau is a particularly well-studied PP2A substrate as hyperphosphorylation of Tau is a hallmark of Alzheimer's disease. Although many cellular targets are likely altered by loss of PP2A, here we find that activation of a single pathway can explain important aspects of the PP2A loss-of-function phenotype in neurons. We demonstrate that PP2A inhibits activation of the neuronal stress kinase DLK and its Drosophila ortholog Wallenda. In the fly, PP2A inhibition activates a DLK/Wallenda-regulated transcriptional program that induces synaptic terminal overgrowth at the neuromuscular junction. In cultured mammalian neurons, PP2A inhibition activates a DLK-dependent apoptotic program that induces cell death. Since hyperphosphorylated Tau is toxic, we wished to test the hypothesis that dephosphorylation of Tau by PP2A is required for neuronal survival. Contrary to expectations, in the absence of Tau PP2A inhibition still activates DLK and induces neuronal cell death, demonstrating that hyperphosphorylated Tau is not required for cell death in this model. Moreover, hyperphosphorylation of Tau following PP2A inhibition does not require DLK. Hence, loss of PP2A function in cortical neurons triggers two independent neuropathologies: 1) Tau hyperphosphorylation and 2) DLK activation and subsequent neuronal cell death. These findings demonstrate that inhibition of the DLK pathway is an essential function of PP2A required for normal Drosophila synaptic terminal development and mammalian cortical neuron survival.


Assuntos
Sobrevivência Celular/genética , Córtex Cerebral/citologia , Neurônios/citologia , Proteína Fosfatase 2/antagonistas & inibidores , Sinapses/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...